
Author Identification: An Approach Based on
Style Feature Metrics of Software Source Codes

Rohit R. Joshi, Rajesh V. Argiddi

Computer Science Department,

Walchand Institute of Technology,
Solapur, India.

Abstract— Today the field of software is facing the problem of
software theft on a major scale. Also it has many more
challenges in front such as plagiarism detection, copyright
disputes, piracies and legal allegations. In most of the cases,
lack of strong evidences is the only issue to resolve the
problems. So in such cases how to resolve the problem is the
question? The field called as author identification helps us to
resolve these kinds of problems. The field leads in the right
direction to find the closest author of the source code under
the above discussed problems. This field has many different
methods to find the likely author. But, the one used in this
paper is stylometry. The stylometry means the study of
linguistic styles of the author of the code. So, the method
involves capturing the writing styles of code of the known
authors and based on these precaptured styles the codes to be
tested are classified to their respected authors. The study
involves 9 different metrics for a software source code. The
sample source codes are obtained from different sources such
as educational assignments of students, code snippets of study
books and open source projects of some developers. The study
is carried out on 1500 sample source codes providing 102621
lines of codes to be scanned.

Keywords— Software Source Code Metrics, Stylometry, Style
metrics, Author Identification

I. INTRODUCTION

As discussed above the field of software is facing lots of
problems such as plagiarism, copyright disputes and legal
allegations etc. Author identification is the technique that
helps in resolving these problems. It’s the technique that
deals with the identification of the likely author of the
source code. Though the technology is same the
methodology differs. This paper concentrates on the
stylistic approach for doing author identification. Style is
that part of human life which is developed over the years
and some part of it persist throughout the life. If we study
those styles carefully then it is possible to derive some
fixed patterns of an individual. The best example of it is our
handwriting. Once we learnt the shapes of the letters in
childhood it persists throughout the life and becomes our
style of handwriting and is unique in some respects. This
means that every person has its own style of handwriting.
Also, based on the handwriting the signatures of every
other person are different. This will be useful when it
comes to the verification of legal documents to avoid
frauds. The work has been previously done in case of
articles, novels, essays etc. Also, some work has been done
in case of e-mails, blogs etc. to identify their authors.
Arvind Narayanan et al. [1] presented some stylometric
features used for author identification of textual material. It
include several features such as length, vocabulary richness

etc. Also they have considered some features in terms of
their frequencies such as word shape, word length, letters,
digits etc. The features such as punctuation, special
characters, function words and syntactic categories are also
considered. So from the above discussion the question
arises in the mind whether this can be possible in case of
software source code? Yes, this can be possible in case of
software source code. The writers of the code also have
some specific style of theirs and the only restriction for
them is to write the code by following the standard
grammar of the language. Here, the author identification of
the software source code can be done on the basis of the
writing styles of the authors of the source code. Each style
is called as metric as it is the kind of the measurement of
the piece of a software source code. The basic procedure of
author identification using styles of the authors involves the
following steps:

1. Capture different styles of the known authors
2. Save these captured styles for future use
3. Take the codes to be tested of unknown authors

and capture their styles
4. Based on the saved precaptured styles of the

authors, predict the likely authors for the codes to
be tested.

This is what discussed the basic of the field author
identification from the viewpoint of the stylistic approach.
So, which are different style metrics to be captured from
the code? What is the methodology of the author
identification? And more details about it are discussed in
further sections.

II. RELATED WORK

In the above section we have seen basics of author
identification, stylometry etc. This section discusses about
the work carried out by different people in this field. Lots
of work has been done in this field in finding the metrics,
doing their extraction and following it by the author
identification. Jay Kothari et al in [2] discussed the method
of probabilistic approach for doing the authorship
identification. For that they have used style based metrics
as well as Text distribution metrics.
Style based metrics of theirs include following:

1. distribution of line size
2. leading spaces
3. underscores per line
4. Semicolons, commas and tokens per line.

Here the main consideration of there is the probability of
the metric. Suppose if ‘x’ is a metric under consideration,
then metric ‘x’ will be classified to class/author ‘i’. They

Rohit R. Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 564 - 568

www.ijcsit.com 1

have worked out this concept by taking two terminologies
as below:
a. Individual Consistency: measure of consistency of author
to use the particular metric
b. Population Consistency: measure of consistency of the
metric used by number of authors. Based on these two
values the selection criterion is built and the classification
tools such as bays and VFI can be used to classify the
author of the unknown code.
Maxim Shevertalov et al in [3] also discussed the method
of discretization of source code metrics for author
identification. They have discussed the metrics such as
follows:

1. Leading Spaces: it’s the measurement of the white
spaces at the beginning of the each line

2. Leading Tabs: it’s the measurement of the tab
characters at the beginning of the each line

3. Line Length: it’s the measurement of length of
each line of the code

4. Line Words: it’s the measurement of words in a
single line of code

Their process of author identification involves extraction of
above metrics from the inputted source codes of known
authors. Then form the author profiles of known authors
with the help of discretized metrics. Based on these author
profiles classify the unknown source codes to predict the
likely author.
 MacDonell S.G. et al [4] have discussed three types of
metrics such as style metrics, structure metrics and layout
metrics. From those metrics some of the styles metrics are:

1. Capital and Small letters metric: Captures writing
style of the author for capital and small letters, say
for variables or method names

2. Lines of Code (LOC): Captures total no. of lines
of code

3. Words per Line: Captures no. of words on per line
basis

Rohit R. Joshi et al in [5] discussed various metrics such as
below:

1. leading spaces, leading tabs, trailing spaces,
trailing tabs,

2. line length, lines of code,
3. brace positions, average indentations,
4. No. of methods etc.

Also, they have introduced the concept of Boolean metrics
where they have considered only the presence or absence of
some metrics such as conditional operators, naïve variable
names, i-as-iterator, method chaining, try statements etc.
The proposed approach of author identification of theirs
involves the methodology of decision trees. They extract
the above metrics from the source codes of the known
authors as well as from source codes to be tested. Then,
preparation of classification model has been done based on
results of extraction of known authors. Based on that
classification model the codes of unknown authors are
classified accordingly. R. A. Vivanco and N. J. Pizzi in[6]
discussed the use of genetic algorithm for identification of
effective metrics. They have discussed following metrics:

1. Lines of code
2. No. of lines containing comments
3. No. of lines containing white spaces

4. Ratio of no. of comment lines to total no. of lines
of code.etc

Frantzeskou G et al [7] discussed three different approaches
such as Neural Network, Discriminant Analysis, Case
Based Reasoning for doing source code authorship analysis.
The table (see Table I) below shows the comparative study
of the existing techniques. Jay Kothari et al in [2] have
taken the sample source codes from open source projects.
They have got 61% of the correct classification of
unidentified samples using Bays classifier, while got 76%
of correct classification using VFI classifier.

TABLE I
COMPARATIVE STUDY OF EXISTING TECHNIQUES

Approach Technology No. of
authors

Result

Probabilistic
approach[2]

Bays/VFI 12 61%/76%
[Bays/VFI]

Discretization
approach[3]

GA 20 54.3%/75%
[Files/Projects]

GA[6] LDA - 62.7%

Maxim Shevertalov et al in [3] have also taken the sample
source codes from open source projects. They considered in
total 60 projects of over 20 developers i .e. 3 projects for
each developer. 2 out of 3 projects are taken for training
purpose while 1 project is left for testing purpose of each
developer. They have got 54.3% of the correct
classification in case of files while 75% of the correct
classification in case of projects. R. A. Vivanco and N. J.
Pizzi in[6] have used the GA approach for identifying
effective metrics. They have used LDA algorithm to get
62.7% as the classification result for 338 code samples.

III. METHODOLOGY

This is the section where it clears the questions like what
are the metrics to be extracted from source code? How they
are extracted? How the actual author identification of the
likely author can be done? First we will start with what is
the meaning of the term metrics?
Metrics: It is nothing but measurement of something taken
at a time. Here, we are going to take the measurements of a
piece of software source code at a given time. Hence, they
are called as software metrics. In the previous section of
related work many metrics from the past literature of this
field have been discussed. The main goal of this paper is to
workout with the style metrics and hence the style based
metrics considered are as follows:

A. Style Based Metrics:

1) i-as-iterator: Almost all the authors of the program
have the habit of taking the ‘i’ as there iterator
variable. Some people to make the differentiation
intentionally avoid this. So, taking the count of ‘i’ from
the program is not useful as it finds in most of the
cases. So, here the consideration is that only the
presence or absence of this variable is checked and the
differentiation is made between the two authors, one
who used this and the other who are not.

2) Line-Length: It deals with no. of characters in the line.
Many authors give most of their preference to better
representation and clear view of their code for better
understanding. Hence they have the tendency to

Rohit R. Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 564 - 568

www.ijcsit.com 2

restrict the line-length up to some specific limit by
writing the single statement in to multiple lines by
breaking it. So, this peculiarity can be captured to
distinguish the two authors.

3) Comments: Every author has its own style of
commenting. Some may use the single liners only,
while others may use the multiple line comments.
Many of the times the mixture of both can be seen
resulting in some new pattern. This attribute captures
these commenting styles of the author.

4) Average Procedure Length: Again this metric captures
the average procedure length for each author. It
involves counting average no. of lines per method. The
value of this metric may vary from author to author
and again depends on the level of expertise. This
metric is calculated on per class basis for each author.

5) Methods: This is also a useful feature to be captured
from a code. While writing the code the author many
times write it as a whole. i.e. doing all the operations
of the program in to the main part of their code. This
will create the problem when some error occurs,
because tracing the error in an entire code will be
problematic. Also, when such code is given to the
other developer working on different module it will be
hectic job for him to understand the function of it. For
avoiding these problems many authors use to write the
code by implementing methods. This metric count for
no. of methods from a source code.

6) No. of Arrays: Storing style is also one of the styles of
the author. Suppose an author has to store 10 values.
The option in front of him/her is either to store it in 10
different variables or in arrays. This metric deal with
no. of arrays on per author basis.

7) Object Creations: Every author has to create the
objects of a class for accessing its contents. But the
differentiation can be made between different styles of
object creations such as object creation with its
declaration and the constructor, direct creation using
new keyword without its declaration.

8) Single Literal Variables: Many of the authors have the
habit of declaring the single literal variables. Though
this can be the unprofessional names given to the
variables, but often found in material such as student
assignments.

9) Double Literal Variables: This metric covers the
double literal variable count such as int aa, int bb etc.
Most of the authors have the habit of declaring these
kinds of variables.

Figure 1 Process of building classification model

B. Process of Author Identification

This section discusses about the actual process of author
identification. The method involves 2 phases:

1) Building of classification model of known authors.
2) Doing prediction on the basis of above saved

classification model.

1) Building Classification Model of Known Authors:

Figure 1 shows the block diagram of the process of
building classification model.

a. Source Code of The Known Authors:
Here the process involves taking the source codes of
the known authors and give it to the metric extraction
tool. Actually the type of input we are giving here is an
arff file which consists of the file names and the name
of the known authors respectively. The arff file is
giving as input because a tool called as WEKA is used
for the classification ahead. These source codes of
known authors are then given to feature extraction tool
in the next step.

b. Feature Extraction Tool: This tool functions similarly
as the filtering tool. It accepts the source codes of
known authors and extracts many different features
discussed above. This tool uses the japa 1.5 parser
which works on AST technique to extract those
features. The japa has different visit () methods which
can be overridden to get the values of these features
and these values are then forwarded to the
classification tool to build classification model of
known authors. The combination of steps (a) and (b)
are altogether called as preprocessing.

c. Classification Model Of Known Authors: As we have
seen the different features have been extracted by
using feature extraction tool, the values of theirs are
then forwarded to the classification tool to build the
classification model. In the classification tool we have
used the decision tree based classifier with C4.5
algorithm. WEKA has provided J48 as its
implementation. It’s a pruning tree algorithm meaning
that the unnecessary branches are cut down by
replacing them with their leaf nodes giving the same
equivalent results. This classification model has been
saved for the future use of identification of likely
author.

 Figure 2 Process of Predicting Likely Authors

Saved Classification Model of Known Authors

Feature Extraction Tool

Source codes of known authors

Source codes of
unknown authors to be

tested

Feature Extraction
Tool

Saved Classification
Model of Known

Authors

Classification Tool

Prediction Results of
Likely Authors

Rohit R. Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 564 - 568

www.ijcsit.com 3

2) Doing Prediction on the Basis of Above Saved
Classification Model:

Figure 2 shows the second phase of our methodology
showing the actual process of predicting the likely author.
a. Source codes of unknown authors:

These are the source code which are of unknown
authors or rather are the ones which are going to be
tested for their likely authorship. The input format of
this provided source codes are again an arff file with
instances having the values as author name and file
name. This input is again given to the next phase of
feature extraction for further process.

b. Feature Extraction Tool:
This unit in the second phase functions the same as in
the first one. It extracts the same metrics that are
extracted for the source code of the known authors. It
also uses japa 1.5 parser working on AST technology
to extract those metrics. The visit () method is
overridden to extract those metrics of japa parser. It
then sets the values of these metrics and sends those
values to the classifier.

c. Classification Tool: This is very important unit in this
entire process. It accepts the values of extracted
metrics from feature extraction tool of unknown codes.
Then by using J48 algorithm and the saved
classification model of known authors from the first
phase, the classifier classifies these unknown codes to
their respected likely authors. The tool called as
WEKA is used for doing all these activities.

d. Prediction Results:
This unit then shows the final result of likely predicted
authors of unknown codes with the help of confusion
matrix built by the classifier. It also, shows the
correctly classified instances and the non-correctly
classified instances from the provided set of instances.
As we are using decision tree based algorithm, it then
builds the tree of the feature values.

IV. EXPERIMENTAL RESULTS

To study the practical aspect of our study we have applied
the technique to the source code samples collected. The
source code samples are collected from different sources
such as student study assignments, code snippets of study
books and some open source projects. The total sample
consists of overall 1504 source codes with 102621 lines of
code scanned. This technique is especially used for all java
code samples. As mentioned above the tool called as japa
which is a java parser is used for metric extraction and it
works on AST technique. As far as metrics are concerned
we have used 9 style based metrics as follows:

1. i-as-iterator
2. Line-length
3. Comments
4. Average procedure length
5. Methods
6. No. of arrays
7. Object creations
8. Single literal variables
9. Double literal variables

 For this work there are in total 8 authors are considered.
Among 1504 total source codes 1128 sample source codes

are taken for the first phase of the methodology i.e. for
building classification model of known authors, while
remaining 376 source codes are taken for prediction of
likely author identification. After applying the
methodology we got total 68.89% correctly classified
instances while 31.11% as incorrectly classified instances.
The tabular representation of the result is shown below.
(See Table II).

TABLE II.

RESULT OF STYLE BASED APPROACH

Approach Classification
Algorithm

Training
Samples

Testing
Samples

Result
%

Style
Based
Approach

C4.5 1128 376 68.89

V. CONCLUSIONS AND FUTURE WORK

This paper represents the basics of the field called author
identification. Author identification is the technique that
helps in finding the likely author of the unknown source
codes. First it introduces this field with the help of different
examples showing that how the habits of the people can be
captured and is used for tracing the frauds. Then it moves
to the actual topic of this paper i.e. author identification of
the source codes. Then it introduces the concept of
stylometry saying that it is the study of linguistic styles of
the authors and the differentiation can be made using these
styles between the two authors. Also, it has discussed
different applications of it such as plagiarism detection,
copyright disputes and legal allegations etc. Then it
discussed the work previously done by different people in
this field. Then it is followed by the methodology in which
the 9 style metrics are discussed in detail. Also the actual
process of author identification is discussed in detail in
methodology. The process involves two phases from which
classification model of known authors is built in the first
phase while in the second phase the actual likely author
identification of the unknown codes is carried out. Then the
experimental results of this work are discussed. Total 1504
source codes are taken for the study from which 1128
source codes are utilized for training purpose i.e. for the
first phase of the methodology and 376 source codes are
utilized for testing purpose i.e. for the second phase of the
methodology. Future work of this study focuses on finding
different layout metrics and doing study of those metrics in
order to perform author identification with the help of those
metrics.

REFERENCES
[1] Arvind Narayanan, Hristo Paskov, Neil Zhenqiang Gong, John

Bethencourt, Emil Stefanov, Eui Chul Richard Shin, Dawn Song.
“On the Feasibility of Internet-Scale Author Identification”. IEEE
Symposium on Security and Privacy (SP), IEEE Conference
Publication, 2012.

[2] Jay Kothari, Maxim Shevertalov, Edward Stehle, and Spiros
Mancoridis.”A probabilistic approach to source code authorship
identification”, 4th International Conference on Information
technology, IEEE Conference Publication, 2007.

[3] Maxim Shevertalov, Jay Kothari, Edward Stehle, and Spiros
Mancoridis, On the Use of Discretized Source Code Metrics for
Author Identification, Ist International Symposium on Search Based
Software Engineering,2009.

Rohit R. Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 564 - 568

www.ijcsit.com 4

[4] MacDonell S.G., Buckingham D., Gray A. R., and Sallis P. J.
(2002) , Software Forensics : Extending Authorship Analysis
Techniques to computer programs , Journal of Law and Information
Scienece, 13(1) , pp. 34-69

[5] Rohit R. Joshi, Rajesh V. Argiddi, Sulabha S. Apte, Author
Identification: An Approach based on Code Feature Metrics using
Decision Trees, International Journal of Computer Applications,
Volume 66– No.4, March 2013 (2002)

[6] R. A. Vivanco, N. J. Pizzi, Identifying Effective Software Metrics
Using Genetic Algorithm , Canadian Conference on Electrical and
Computer Engineering, 2003, IEEE CCECE 2003.

[7] Frantzeskou G, Gritzalis S., & MacDonell S., (2004) ,Source Code
Authorship Analysis For Supporting the Cybercrime Investigation
Process , 1st International Conference on E-Business and
Telecommunication networks. Setubal, Portugal, INSTICC Press,
pp. 85-92.

Rohit R. Joshi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 564 - 568

www.ijcsit.com 5

